
Writing your first plug‐in for SMath Studio Desktop in C#
[rev.2 | 2018.01.13 | SS ≥ 0.98.6356]

SMath Studio desktop provides the possibility to write plug-ins to extend program's features. The simplest feature

you can think to add in the program is probably a function , and this is what we will do step-by-step in this tutorial.

First of all, we have to decide our goal. In this plug-in, we will try to create a combinations function that achieves

what is shown below:

knk

n
C ,kn

10C ,35

C ,53 "Factorial is defined for real numbers and zero."lastError

The finished function syntax will be in the form: combin ,kn

This tutorial as well as the complete plug-in code can be found in the public SVN repository of SMath Studio:

https://smath.info/svn/public/plugins/Tutorials/C#/CombinFunction/

Requirements

To accomplish our task we need an IDE (Integrated Development Environment); you can use the one you want, in

this example we will use Visual Studio Community 2015 (you can download it for free on the official website

https://www.visualstudio.com/vs/)

The second requirement is to have SMath Studio on your system.

Let's start!

1. Once Visual Studio is installed, open it and click on File ⇒ New

Project from the main menu orStart ⇒ New Project from theStart Page

IMPORTANT

Be sure to save your project periodically as you work on this tutorial!

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

1 / 16

2. In the New Project dialog, choose .NET Framework 2.0, then navigate to Templates ⇒ Visual C# ⇒
Windows ⇒ Class Library and type the name for this project.

In this case, we choose CombinFunction. Once all is done, click on OK.

3. Now make theSolution Explorer visible (if it is not visible already) by clicking on View ⇒ Solution Explorer

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

2 / 16

4. In theSolution Explorer , right-click the project name and click Unload Project.

5. Now we will seeCombinFunction (unavailable) . Right-click on it and choose Edit CombinFunction.csproj.

6. The project file will be opened. Scroll down to the first <ItemGroup> tag and add the following code above it:

<PropertyGroup>

<!-- Release -> SMath Release Manager -->

<SMathDir Condition=" '$(SMathDir)' == '' AND '$(Configuration)' == 'Release'

">..\..\..\Main\SMathStudio\canvas\bin\Debug</SMathDir>

<!-- Debug -> development -->

<SMathDir Condition=" '$(SMathDir)' == '' AND '$(Configuration)' == 'Debug'

">C:\Program Files (x86)\SMath Studio</SMathDir>

</PropertyGroup>

hint: you can copy-paste the code from these greyed areas

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

3 / 16

These lines of code will allow you to have a plug-in ready to be shared with the community, and they let you to

compile the plug-in in Debug mode on your machine. If is not in your purposes to share the plugin, you can

even use the code below instead.

<PropertyGroup>

<SMathDir Condition=" '$(SMathDir)' == '' ">C:\Program Files (x86)\SMath

Studio</SMathDir>

</PropertyGroup>

"C:\Program Files (x86)\SMath Studio" is obviously the path of SMath Studio on your system (you have to

change it if different).

Under the previous code, add the following code:

<ItemGroup>

<Reference Include="SMath.Controls">

<HintPath>$(SMathDir)\SMath.Controls.dll</HintPath>

<Private>False</Private>

</Reference>

<Reference Include="SMath.Manager">

<HintPath>$(SMathDir)\SMath.Manager.dll</HintPath>

<Private>False</Private>

</Reference>

<Reference Include="SMath.Math.Numeric">

<HintPath>$(SMathDir)\SMath.Math.Numeric.dll</HintPath>

<Private>False</Private>

</Reference>

<Reference Include="SMath.Math.Symbolic">

<HintPath>$(SMathDir)\SMath.Math.Symbolic.dll</HintPath>

<Private>False</Private>

</Reference>

</ItemGroup>

This will ensure that the most recent APIs of SMath Studio available on your system will be loaded once you

open and compile the project.

Once done, you should see something like in this screenshot. The yellow vertical bar shows the lines of code

where there are changes respect to the last save; color becomes olive green after saving to show lines edited

since the begin of the session.

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

4 / 16

7. Save it, then go back toSolution Explorer window, right-click on the project name and then on Reload Project.

Confirm on the dialog that ask you if you to close all the files, if it is prompted.

If all is gone right, you will see that now the SMath Studio

assemblies are loaded in your project (in the Solution

Explorer expand the References item)

Now everything is ready to start coding!

8. In theSolution Explorer double-click on Class1.cs

9. In the editing window, above the class definition, type in the following:

using SMath.Manager;

using SMath.Math;

10. Within the class definition type the following:

: IPluginHandleEvaluation

then click on the light bulb and choose Implement

interface.

this will automatically insert an interface (with the interface

members) that must be implemented in the class (see

endnote 1)

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

5 / 16

11. Next, type in the following:

AssemblyInfo[] assemblyInfos;

12. Then scroll down the page and find the following subroutine:

Replace the exception code with this:

this.assemblyInfos = new[]

{

new AssemblyInfo("SMath Studio", new Version(0, 98), new

Guid("a37cba83-b69c-4c71-9992-55ff666763bd"))

};

This is required in any plug-in made for SMath Studio.

- The 2nd argument represents the version number of Smath for which you are developing this plug-in. So if

you are developing for SMath version 0.98, you insert 98. If the version you are targeting is different, enter the

appropriate number.

- The 3rd argument will be the same for any plug-in, never change it!

13. Now scroll the code to the following subroutine:

type in the following within the get block (see endnote 2):

return this.assemblyInfos;

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

6 / 16

14. Now scroll the code to the following method:

replace the content with the following:

return new[]

{

new TermInfo("combin", TermType.Function, "(n, k) - returns the number

of subsets (combinations) of k elements that can be formed from n elements.",

FunctionSections.Unknown, true)

};

This allows SMath Studio (and the user) to know several things about your function:

- The 1st argument, "combin", is the function name to use inside the worksheets;

- The 2nd argument, TermType.Function, is the type of object combin; we'll see it again later;

- The 3rd argument, "(n, k) - Returns...", is the description available in the dynamic assistance;

- The 4th argument, FunctionSections.Unknown, is used to group functions by categories (CTRL+E in SS);

- The 5th argument, true, is to display the function in the dynamic assistance (use false to hide it).

15. Now scroll to the top and add another interface:

IPluginLowLevelEvaluationFast

to do it, add a comma after the first interface and type the new one, then implement his members (light bulb)

16. If you scroll down the code, another method is now available:

type in the following conditional If statement:

if (value.Type == TermType.Function && value.ArgsCount == 2 && value.Text

== "combin")

{

}

that means "if what is being processing ismy function , then do something"

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

7 / 16

17. Now type in the following within the If block:

Term[] arg1 = Decision.Preprocessing(value.Items[0],

context).ToTermsList().ToArray();

Term[] arg2 = Decision.Preprocessing(value.Items[1],

context).ToTermsList().ToArray();

These preprocessing steps are needed to correctly prepare the arguments. This means that all possible

substitutions will be performed.

18. Next, type the following:

List<Term> answer = new List<Term>();

This will prepare a container for the answer, made by Terms; these are the low-level units to build math

from within the plug-ins. To create the answer, we have to compose an expression array formed in

Reverse Polish Notation (see endnote 3). The mathematical expression is:

knk

n

it can be expressed in RPN as:

n ! k ! n k ‐ ! * /

Thus, type in the following lines to compose the list of terms in RPN:

answer.AddRange(arg1);

answer.Add(new Term(Operators.Factorial, TermType.Operator, 1));

answer.AddRange(arg2);

answer.Add(new Term(Operators.Factorial, TermType.Operator, 1));

answer.AddRange(arg1);

answer.AddRange(arg2);

answer.Add(new Term(Operators.Subtraction, TermType.Operator, 2));

answer.Add(new Term(Operators.Factorial, TermType.Operator, 1));

answer.Add(new Term(Operators.Multiplication, TermType.Operator, 2));

answer.Add(new Term(Operators.Division, TermType.Operator, 2));

⇐ n

⇐ !

⇐ k

⇐ !

⇐ n

⇐ k

⇐ -

⇐ !

⇐ *

⇐ /

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

8 / 16

19. To finish up the function, type the following right below our List :

result = Entry.Create(answer);

return true;

This will returns the result and that the function we were looking for is found.

A result is needed even to know if this is not the plug-in that handle the function in evaluation:

20. The math is done. Now we have to check if the setup of the plug-in is complete; go in the Solution Explorer and

select Show All Files (if not yet selected).

Navigate to Properties ⇒ AssemblyInfo.cs, double-click on this file.

21. Now we can edit some attributes:

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

9 / 16

22. There should be a Guid attribute; if not, you must add it. Every plug-in must have a different one.

It is the identifier of your plug-in, and it is used to save the dependency when you use combin() in a worksheet.

Remember: there are many like it, but this one is your .

IMPORTANT

If it is missing, you can find it in the project file (see point 4 above)

23. Last thing here is the version. Add an asterisk for the build and revision numbers of the AssemblyVersion, so

you will have always a new progressive version every time you will compile the plug-in. AssemblyFileVersion , if

available, can be safely removed (otherwise you have to update it manually).

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

10 / 16

24. Before testing, we have to open again the project file, as shown in point 4. Once done, go above the </Project>

closing tag in the last line and paste the following:

<!-- copy anything from the build path to the SMath Studio extension path -->

<Target Name="AfterBuild" Condition=" '$(Configuration)' == 'Debug' ">

<GetAssemblyIdentity AssemblyFiles="$(TargetPath)">

<Output TaskParameter="Assemblies" ItemName="AssemblyInfo" />

</GetAssemblyIdentity>

<GetAssemblyIdentity AssemblyFiles="$(SMathDir)\SMath.Manager.dll">

<Output TaskParameter="Assemblies" ItemName="ProgramInfo" />

</GetAssemblyIdentity>

<PropertyGroup>

<ProgramVersion>%(ProgramInfo.Version)</ProgramVersion>

<ConfigFileName>config.$(ProgramVersion.Replace(".", "_")).ini</ConfigFileName>

<!-- SS portable -->

<PluginPath Condition=" Exists('$(SMathDir)\portable.version')

">$(SMathDir)\extensions\plugins\$(ProjectGuid.TrimStart("{").TrimEnd("}"))</PluginPath>

<!-- SS from installer -->

<PluginPath Condition=" '$(PluginPath)' == ''

">$(APPDATA)\SMath\extensions\plugins\$(ProjectGuid.TrimStart("{").TrimEnd("}"))</Plugin

Path>

</PropertyGroup>

<ItemGroup>

<BuildFiles Include="$(TargetDir)*.*" />

<ConfigFileContent Include="%(AssemblyInfo.Version)" />

<!-- extension status (0: enabled; 2: disabled; 1: removed) -->

<ConfigFileContent Include="0" />

</ItemGroup>

<!-- uncomment line below to keep clean the extension directory -->

<!-- <RemoveDir Condition="'$(Configuration)' == 'Debug'"

Directories="$(PluginPath)"/> -->

<Copy SourceFiles="@(BuildFiles)"

DestinationFolder="$(PluginPath)\%(AssemblyInfo.Version)" ContinueOnError="false" />

<WriteLinesToFile File="$(PluginPath)\$(ConfigFileName)"

Lines="@(ConfigFileContent)" Overwrite="true" />

</Target>

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

11 / 16

This makes possible to deploy automatically all the build files in the proper directory.

%APPDATA%\Roaming\SMath\extensions\plugins\{GUID}\{version} for SMath Studio installed

{SMathPath}\Extenions\plugins\{GUID}\{version} for SMath Studio portable

Save it, then go back toSolution Explorer window, right-click on the project name and then on Reload Project.

Confirm on the dialog that ask you if you to close all the files, if it is prompted.

25. Time to test! In theSolution Explorer , right-click the solution name and click on Rebuild.

26. Now runSMath Studio , then click on Tools ⇒ Plugins...

In theQuick search field, we search for combin ; we'll see that our plugin is loaded and enabled!

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

12 / 16

27. Is our function loaded too? Go to Insert ⇒ Function... or click the Function symbol on theToolbar .

In the Function's name list, type c and scroll down

to find our combin function; the description is the

one we have defined at point 12. Since at that

point we haven't provided the number of the

arguments, it is shown with three points (undefined

number of arguments) but only if we will use 2

arguments the function will works (because we

have defined this behavior at point 16).

If you type combin on the canvas (with Dynamic assistance enabled):

PressTAB and test it. If the result is like in the screenshot below, you have successfully created your first plug-in!

If you go back at point 14, we can use this to force a 2 arguments function onTAB key press

return new[]

{

new TermInfo("combin", TermType.Function, "(n, k) - returns the number

of subsets (combinations) of k elements that can be formed from n elements.",

FunctionSections.Unknown, true, new ArgumentInfo(ArgumentSections.RealNumber), new

ArgumentInfo(ArgumentSections.RealNumber))

};

Once applied, both the number and the type of

arguments are shown to the user, and TAB will

provide a 2 arguments function.

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

13 / 16

28. However, in the real world, we seldom get by without making mistakes from time-to-time. Let’s now show how

to debug our plug-in. Typically, you would debug your application before doing steps 24 through 27 that were

outlined above. Debugging an application add‐in with Visual Studio Community appears to not be as

straightforward as in the professional versions of Visual Studio. But below is a workaround that seems to work.

First, we have to open again the project file, as shown in point 4. Once done, under the <PropertyGroup> we

have added previously, we can add the following lines:

<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">

<StartAction>Program</StartAction>

<StartProgram>$(SMathDir)\SMathStudio_Desktop.exe</StartProgram>

</PropertyGroup>

Save it, then go back toSolution Explorer window, right-click on the project name and then on Reload Project.

Confirm on the dialog that ask you if you to close all the files, if it is prompted.

29. Within Visual Basic, set a breakpoint at a convenient location. Simply place your cursor in the line at which

you wish to set thebreakpoint and click on Debug ⇒ Toggle Breakpoint as shown below:

A big red dot will show that the breakpoint is set on the choosen line (the if statement of our function):

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

14 / 16

30. Start debugging. Click on Debug⇒ Start Debugging or Start on the Visual Studio toolbar.

When you do this, Visual Studio will automatically start up Smath Studio and pass the focus to SMath.

When this occurs, you must attempt to utilize the plug‐in you have created for the purpose of debugging it.

In this case, we type in the following:

As soon as the “=” is entered, if abreakpoint was set, control and screen focus will return to Visual Studio

where you can step through the code, watch variable values, and other debugging tasks.

See endnote 5 for some useful links on how to debug your applications within Visual Studio.

31. To stop debugging, click on Debug ⇒ Stop Debugging as shown below. When you do this, the instance of

SMath in which you tested your plug-in will close.

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

15 / 16

32. Finally, when your plug-in is finished and bug free, you are ready to release it. This essentially involves

repeating step 25 above, with Release configuration.

To know how to release your plug-in to the community, please visit the following link:

http://en.smath.info/forum/yaf_postst2399_Extensions-Manager.aspx

Probably you have noticed that the Visual Studio IntelliSense provides hints about methods and properties

available for the various namespaces; you can find a list of the featues available within the SMath Studio APIs in

his Extensions Manager ; go to Tools ⇒ Plugins... ⇒ Handbooks then choose Online gallery and search the

keyword core.

Endnotes:

1. Refer to: https://msdn.microsoft.com/en-us/library/ms173156.aspx

2. Refer to: https://msdn.microsoft.com/en-us/library/ms228503.aspx

3. For explanation of Reverse Polish notation refer to: http://en.wikipedia.org/wiki/Reverse_polish_notation

4. Refer to: https://support.microsoft.com/en-us/kb/865219

5. Here are some useful links about how to debug your applications within Visual Studio

- Informations on debugging in Visual Studio may be found at:

http://msdn.microsoft.com/en‐us/library/k0k771bt%28v=VS.100%29.aspx

- Execution Control (stepping through your code):

http://msdn.microsoft.com/en‐us/library/y740d9d3%28v=VS.100%29.aspx

- Breakpoint Overview:

http://msdn.microsoft.com/en‐us/library/5557y8b4%28v=VS.100%29.aspx

- Viewing Data in the Debugger:

http://msdn.microsoft.com/en‐us/library/esta7c62%28v=VS.100%29.aspx

- Edit and Continue:

http://msdn.microsoft.com/en‐us/library/bcew296c%28v=VS.100%29.aspx

13 gen 2018 - Writing your first plug‐in for SMath Studio Desktop in C# [rev.2].sm

16 / 16

